STUDI PENYESUAIAN PERANGKAT LUNAK EIDORS PADA SISTEM ELECTRICAL IMPEDANCE TOMOGRAPHY (EIT) UNTUK MENINGKATKAN AKURASI CITRA OBJEK

Authors

  • Akbar Sujiwa Universitas PGRI Adi Buana Surabaya
  • Atmiasri Universitas PGRI Adi Buana Surabaya

DOI:

https://doi.org/10.36595/jire.v5i1.507

Keywords:

EIDORS, EIT, Tomography, Impendance, Adjusting

Abstract

Electrical Impedance Tomography (EIT) merupakan metode pencitraan non-invasive yang semakin banyak dikembangkan oleh para peneliti karena selain berbiaya rendah juga menggunakan bahan non-radiatif. Rekonstruksi citra dari EIT biasanya menggunakan perangkat lunak bernama EIDORS. Namun literasi penggunaan EIDORS masih sedikit dan kebanyakan peneliti berfokus pada hasil citra rekonstruksi saja. Oleh karena itu dalam artikel ini peneliti mencoba melakukan studi dengan melakukan variasi penyesuaian algoritma EIDORS agar diperoleh suatu citra yang akurat sesuai kondisi objek yang dicitrakan. Dari beberapa kali pengambilan data dan penyesuaian kode algoritma diperoleh dua kesimpulan bahwa akurasi pencitraan EIDORS dapat ditingkatkan dengan menambahkan kode program rotate_meas dan penyesuaian nilai amplitudo arus dalam library mk_stim_pattern dari nilai 1 hingga 0.01.

References

Y. Sopandi and I. R. S. Siti, “EVALUASI PENGARUH PAPARAN RADIASI TERHADAP EFEK SITOTOKSIK DAN GENOTOKSIK PADA Allium cepa SEBAGAI BIOINDIKATOR KONDISI LINGKUNGAN KERJA BAGIAN RADIOLOGI RUMAH SAKIT,” J. Tek. Lingkung., vol. 19, no. 2, pp. 205–214, 2013.

R. Aryawijayanti, Susilo, and Sutikno, “ANALISIS DAMPAK RADIASI SINAR-X PADA MENCIT MELALUI PEMETAAN DOSIS RADIASI DI LABORATORIUM FISIKA MEDIK,” J. MIPA, vol. 38, no. 1, pp. 25–30, 2015.

N. Handayani, K. F. H., F. Haryanto, S. N. K., M. R. Baidillah, and W. P. Taruno, “Simulasi Rekonstruksi Citra pada Sensor Brain ECVT (Electrical Capacitance Volume Tomography) dengan Metode ILBP (Iterative Linear Back Projection),” Indones. J. Appl. Phys., vol. 6, no. 02, pp. 107–116, 2016.

S. Aguiar Santos, T. Schlebusch, and S. Leonhardt, “Simulation of a current source with a cole-cole load for multi-frequency electrical impedance tomography,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, pp. 6445–6448.

S. Leonhardt and B. Lachmann, “Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring?,” Intensive Care Medicine, vol. 38, no. 12. Springer, pp. 1917–1929, 20-Dec-2012.

M. Fernandez-Corazza, S. Turovets, and C. H. Muravchik, “A novel bounded EIT protocol to generate inhomogeneous skull conductivity maps non-invasively,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2020, vol. 2020-July, pp. 1440–1443.

N. T. Susanti, S. Prasetyarini, and A. D. P. Shita, “Pengaruh Pajanan Radiasi Sinar-X dari Radiografi Panoramik terhadap pH Saliva (The Effects of Panoramic Dental X-Ray Radiation Exposure on Salivary pH),” Pustaka Kesehatan; Vol 4 No 2, 2016.

H. Frommer, Radiology for the dental professional, 8th ed. St. Louis Mo.: Mosby, 2005.

J. H. Hendrata, “Efek Radioterapi Kanker Kepala dan Leher Terhadap Jaringan Dalam Mulut,” J. Kedokt. Meditek, vol. 11, no. 29 SE-Tinjauan Pustaka, Jan. 1970.

H. Barunawaty, “EFEK SAMPING RADIASI SINAR X DAN SINAR GAMMA PADA DAYA TAHAN RONGGA MULUT,” J. Dentomaxillofacial Sci., vol. 1, no. 1, p. 31, Dec. 2016.

M. Gehre et al., “Sparsity reconstruction in electrical impedance tomography: An experimental evaluation,” in Journal of Computational and Applied Mathematics, 2012, vol. 236, no. 8, pp. 2126–2136.

J. J. Huang, Y. H. Hung, J. J. Wang, and B. S. Lin, “Design of wearable and wireless electrical impedance tomography system,” Meas. J. Int. Meas. Confed., vol. 78, pp. 9–17, Jan. 2016.

H. McCann, N. Polydorides, J. C. Murrieta-Lee, K. Ge, P. Beatty, and C. J. D. Pomfrett, “Sub-second functional imaging by Electrical Impedance Tomography,” in Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, vol. 2006, pp. 4269–4272.

M. Khalighi and M. Mikaeili, “A floating wide-band current source for electrical impedance tomography,” Rev. Sci. Instrum., vol. 89, p. 85107, Aug. 2018.

A. Adler and W. R. B. Lionheart, “Uses and abuses of EIDORS: An extensible software base for EIT,” in Physiological Measurement, 2006, vol. 27, no. 5, p. S25.

C. Montellano, E. Cardiel, L. Garay, S. Rodriguez, and P. Rogeli, “Development of an electrical impedance tomograph,” in CCE 2011 - 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Program and Abstract Book, 2011.

L. Horesh, “Some Novel Approaches in Modelling and Image Reconstruction for Multi Frequency Electrical Impedance Tomography of the Human Brain,” 2006.

M. Khalighi, B. Vosoughi Vahdat, M. Mortazavi, W. Hy, and M. Soleimani, “Practical design of low-cost instrumentation for industrial electrical impedance tomography (EIT),” in 2012 IEEE I2MTC - International Instrumentation and Measurement Technology Conference, Proceedings, 2012, pp. 1259–1263.

N. D. Harris, “Electrical impedance tomography/applied potential tomography-physiological imaging of the lungs,” in IEE Colloquium on Electrical Impedance Tomography/Applied Potential Tomography, 1992, pp. 10/1-10/2.

C. Putensen, B. Hentze, S. Muenster, and T. Muders, “Electrical Impedance Tomography for Cardio-Pulmonary Monitoring,” J. Clin. Med., vol. 8, no. 8, 2019.

M. Khalighi, B. Vahdat, M. Mortazavi, and M. Mikaeili, “Design and implementation of precise hardware for electrical impedance tomography (eit)*,” Iran J Sci Technol Trans Electr Eng, vol. 38, pp. 1–20, Jun. 2014.

R. Ogawa, M. R. Baidillah, S. Akita, and M. Takei, “Investigation of physiological swelling on conductivity distribution in lower leg subcutaneous tissue by electrical impedance tomography,” J. Electr. Bioimpedance, vol. 11, no. 1, pp. 19–25, May 2020.

W. Q. Yang and S. Liu, “Role of tomography in gas/solids flow measurement,” Flow Meas. Instrum., vol. 11, no. 3, pp. 237–244, Sep. 2000.

N. Reinecke and D. Mewes, “Recent developments and industrial/research applications of capacitance tomography,” Meas. Sci. Technol., vol. 7, no. 3, pp. 233–246, 1996.

M. Jiang and G. Wang, “Convergence Studies on Iterative Algorithms for Image Reconstruction.,” IEEE Trans. Med. Imaging, vol. 22, pp. 569–579, 2003.

Y. Li and W. Q. Yang, “Virtual electrical capacitance tomography sensor,” J. Phys. Conf. Ser., vol. 15, no. 1, pp. 183–188, Jan. 2005.

M. Khalighi, B. Vahdat, M. Mortazavi, and M. Mikaeili, “DESIGN AND IMPLEMENTATION OF PRECISE HARDWARE FOR ELECTRICAL IMPEDANCE TOMOGRAPHY ( EIT ),” 2014.

Y. Zhou and X. Li, “A real-time EIT imaging system based on the split augmented Lagrangian shrinkage algorithm,” Meas. J. Int. Meas. Confed., vol. 110, pp. 27–42, Nov. 2017.

T. Instruments, Ultra Small, Low Power, 12-Bit Analog to Digital Converter with Internal Reference. Texas: Texas Instruments, 2009.

X. Chen and J. Chen, “Design of an arbitrary waveform signal generator,” in Procedia Engineering, 2011, vol. 15, pp. 2500–2504.

S. Franco, Design with operational amplifiers and analog integrated circuits, Fourth edition. 2015.

H. Zheng et al., “Sistem Teknologi Informasi,” SinarFe7, vol. 2, no. 2, pp. 425–429, Jul. 2012.

S. Chakraborty, D. Chakraborty, and M. Chattopadhyay, “Analysis of conductivity effects in 2D electrical tomography systems: a simulation study,” 2014, pp. 1–4.

Giarsyani, N., Hidayatullah, A., & Rahmadi, R. (2020). KOMPARASI ALGORITMA MACHINE LEARNING DAN DEEP LEARNING UNTUK NAMED ENTITY RECOGNITION : STUDI KASUS DATA KEBENCANAAN. Jurnal Informatika Dan Rekayasa Elektronik, 3(1), 48 - 57. doi:10.36595/jire.v3i1.222

Daulay, N., Lestari, N., & Armanto, A. (2020). SIMULASI MONITORING PENGATUR KECEPATAN KIPAS ANGIN MENGGUNAKAN SISTEM FUZZY BERBASIS WEB. Jurnal Informatika Dan Rekayasa Elektronik, 3(1), 66 - 76. doi:10.36595/jire.v3i1.201

Downloads

Published

2022-04-23