PERBANDINGAN CHAOTIC ELEPHANT HERDING OPTIMIZATION ALGORITHM DENGAN ELEPHANT SWARM WATER SEARCH ALGORITHM
DOI:
https://doi.org/10.36595/jire.v5i1.389Keywords:
Chaotic Elephant Herding Optimization (CEHO), Elephant Swarm Water Search (ESWS)Abstract
Tujuan dari penelitian ini adalah untuk membandingkan tingkat efektivitas dari dua algoritma hasil pengembangan Elephant Herd Optimization (EHO) yaitu Chaotic Elephant Herding Optimization (CEHO) dan Elephant Swarm Water Search (ESWS). Metode yang digunakan untuk mengukur kinerja dari kedua algoritma adalah metode pengujian melalui software MATLAB versi 2018a yang dilakukan terhadap enam persamaan matematika sebagai fungsi pembanding untuk mengukur tingkat efektivitas kinerja dari kedua algoritma yaitu persamaan fungsi Rosenbrock, Griewank, Ackley, Shwefel, Elliptic dan Rastrigin. Hasil penelitian menunjukkan bahwa algoritma ESWS lebih efektif daripada algoritma CEHO untuk mencari titik minimum global dalam persoalan metode optimasi. Algoritma ESWS tampak unggul dalam mencapai titik minimum untuk fungsi Elliptic, Schwefel, Ackley, Rosenbrock, Griewank dan Rastrigin.
References
N. Giarsyani, A. F. Hidayatullah, and R. Rahmadi, “i ISSN . 2620-6900 ( Online ) 2620-6897 ( Cetak ),” JIRE, vol. 3, no. 1, pp. 48–57, 2020.
S. Fadli and K. Imtihan, “Penerapan Multi-Objective Optimization on the Basis of Ratio Analysis ( Moora ) Method,” JIRE, vol. 2, no. 2, pp. 10–19, 2019.
M. A. Elhosseini, R. A. El Sehiemy, Y. I. Rashwan, and X. Z. Gao, “On the performance improvement of elephant herding optimization algorithm,” Knowledge-Based Syst., vol. 166, pp. 58–70, 2019, doi: 10.1016/j.knosys.2018.12.012.
I. Strumberger, M. Beko, M. Tuba, M. Minovic, and N. Bacanin, “Elephant herding optimization algorithm for wireless sensor network localization problem,” IFIP Adv. Inf. Commun. Technol., vol. 521, no. July, pp. 175–184, 2018, doi: 10.1007/978-3-319-78574-5_17.
E. Tuba, D. Dolicanin-Djekic, R. Jovanovic, D. Simian, and M. Tuba, “Combined elephant herding optimization algorithm with k-means for data clustering,” Smart Innov. Syst. Technol., vol. 107, no. December 2018, pp. 665–673, 2019, doi: 10.1007/978-981-13-1747-7_65.
S. Mandal, “Elephant swarm water search algorithm for global optimization,” Sadhana - Acad. Proc. Eng. Sci., vol. 43, no. 1, pp. 1–21, 2018, doi: 10.1007/s12046-017-0780-z.
C. H. Prasad, K. Subbaramaiah, and P. Sujatha, “Cost–benefit analysis for optimal DG placement in distribution systems by using elephant herding optimization algorithm,” Renewables Wind. Water, Sol., vol. 6, no. 1, 2019, doi: 10.1186/s40807-019-0056-9.
E. Tuba, I. Ribic, R. Capor-Hrosik, and M. Tuba, “Support Vector Machine Optimized by Elephant Herding Algorithm for Erythemato-Squamous Diseases Detection,” Procedia Comput. Sci., vol. 122, pp. 916–923, 2017, doi: 10.1016/j.procs.2017.11.455.
E. Tuba, R. Capor-Hrosik, A. Alihodzic, R. Jovanovic, and M. Tuba, “Chaotic elephant herding optimization algorithm,” SAMI 2018 - IEEE 16th World Symp. Appl. Mach. Intell. Informatics Dedic. to Mem. Pioneer Robot. Antal K. Bejczy, Proc., vol. 2018-Febru, no. September, pp. 213–216, 2018, doi: 10.1109/SAMI.2018.8324842.
A. Raß, “High precision particle swarm optimization algorithm (HiPPSO),” J. Open Res. Softw., vol. 8, no. 1, pp. 1–7, 2020, doi: 10.5334/JORS.282.
E. Kaya, “A Novel Neural Network Training Algorithm for the Identification of Nonlinear Static Systems?: Artificial Bee Colony Algorithm Based on Effective Scout Bee Stage,” Symmetry (Basel)., vol. 13, p. 419, 2021.
I. Damaj, M. Elshafei, M. El-Abd, and M. E. Aydin, “An analytical framework for high-speed hardware particle swarm optimization,” Microprocess. Microsyst., vol. 72, no. 102949, pp. 1–16, 2020, doi: 10.1016/j.micpro.2019.102949.
A. Nurhayati and A. G. Darmoyono, “A Comparison of Hybrid Methods of the Krill Herd Algorithm,” 2018, doi: 10.1109/INCAE.2018.8579364.
S. Agrawal and R. Kumar, “SELF ORGANIZING MIGRATING ALGORITHM BASED ON VARIOUS CHAOTIC MAPS,” Adv. Appl. Math. Sci., vol. 19, no. 12, pp. 1323–1335, 2020.
A. Nurhayati, “Perbandingan algoritma cuckoo search krill herd (cskh) dan levy-flight krill herd (lkh),” 2018, no. Selisik, pp. 448–453.
S. Weiser, H. Wulf, and J. Ihlemann, “Characterization of the objective function landscape using a modified Dijkstra algorithm,” in Proceedings in Applied Mathematics & Mechanics published, 2021, vol. 20, no. 1, pp. 1–3, doi: 10.1002/pamm.202000072.
M. Panda, “Elephant search optimization combined with deep neural network for microarray data analysis,” J. King Saud Univ. - Comput. Inf. Sci., pp. 1–9, 2017, doi: 10.1016/j.jksuci.2017.12.002.
Downloads
Published
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis.