FUZZY EXPERT SYSTEM UNTUK MEMBANTU DIAGNOSIS AWAL SINDROMA METABOLIK

Authors

  • Supardianto Supadianto Universitas Islam Indonesia
  • Sri Kusumadewi Universitas Islam Indonesia
  • Linda Rosita Universitas Islam Indonesia

DOI:

https://doi.org/10.36595/jire.v4i1.313

Keywords:

Metabolic syndrome, fuzzy expansion system, obesity

Abstract

Metabolic syndrome is a condition that occurs in a person simultaneously, such as an increase in blood pressure, high blood sugar levels, excess fat around the waist, and an unusual increase in cholesterol levels. This condition makes the risk for sufferers experiencing heart disease, stroke, and diabetes mellitus very high. Metabolic syndrome is a non-contagious disease. A person who has metabolic syndrome is usually difficult to detect, because experts are needed to analyze it. Fuzzy Expert System (Fuzzy Expert System) is part of artificial intelligence using fuzzy logic. where the system tries to adopt human knowledge to computers so that computers can solve problems as usually done by experts. Where later the results of the system developed in the study can at least help experts (doctors) in providing conclusions on the risk of disease suffered by patients through the analysis of metabolic syndrome. This system will involve experts such as doctors and patients, where the doctor makes a diagnosis of the patient's metabolic syndrome analysis results, and the patient is used to seeing the diagnosis of the risk of the disease being suffered.

References

[1] B. Isomaa, P. Almgren, and T. Tuom, “Cardiovascular Morbidity and Mortality,” Diabetes Care, vol. 24, no. 4, pp. 683–689, 2001.
[2] WHO, “Definition, diagnosis, and classification,” Ameliorating Mental Disability: Questioning Retardation. English, pp. 1–49, 1999.
[3] S. M. Grundy, “Obesity, metabolic syndrome, and cardiovascular disease,” J. Clin. Endocrinol. Metab., vol. 89, no. 6, pp. 2595–2600, 2004.
[4] E. S. Ford, W. H. Giles, and A. H. Mokdad, “Increasing prevalence of the metabolic syndrome among U.S. adults,” Diabetes Care, vol. 287, no. 10, pp. 1–4, 2002.
[5] A. J. Cameron, J. E. Shaw, and P. Z. Zimmet, “The metabolic syndrome: Prevalence in worldwide populations,” Endocrinol. Metab. Clin. North Am., vol. 33, no. 2, pp. 351–375, 2004.
[6] Husna A.F, “‘Hubungan Antara Gaya Hidup dan Kejadian Sindrom Metabolik Pada Karyawan Berstatus Gizi Obesitas di Pt. Pamapersada Nusantara, Distrik Tanjung Enim, Sumatera Selatan,’” ABA J., vol. 102, no. 4, pp. 24–25, 2017.
[7] N. F. Susanto, “Deteksi Dini Penyakit Demam Berdarah Dengan Metode Fuzzy Expert System Deteksi,” Universitas Islam Negeri Malang, 2016.
[8] N. I. Putu, Y. Anggreni, F. Kedokteran, and U. Udayana, “Hubungan Antara Kadar Asam Urat Serum Dengan Resistensi Insulin Pada Obesitas Abdominal,” Universitas Udyana, 2018.
[9] IDF, “The IDF consensus worldwide definition of the metabolic syndrome Part 1 : Worldwide definition for use in clinical practice,” in International Diabetes Federation, 2006, pp. 1–7.
[10] S. Kamso, P. Purwantyastuti, D. U. Lubis, R. Juwita, Y. K. Robbi, and B. Besral, “Prevalensi dan Determinan Sindrom Metabolik pada Kelompok Eksekutif di Jakarta dan Sekitarnya,” Kesmas Natl. Public Heal. J., vol. 6, no. 2, p. 85, 2011.
[11] M. A. Bimandama and T. U. Soleha, “Hubungan Sindrom Metabolik dengan Penyakit Kardiovaskular,” J. Major., vol. 5, no. 2, pp. 49–55, 2016.
[12] Sri Kusumadewi, “Rtificial Ntelligence,” in Artificial Intelligence (Teknik dan Aplikasinya, Pertama., Yogyakarta: Graha Ilmu 2003, 2003, pp. 1–335.
[13] H. Nasution, “Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan,” ELKHA J. Tek. Elektro, vol. 4, no. 2, pp. 4–8, 2012.
[14] S. N. Nuryadin, “Sistem Pendukung Keputusan Dalam Menentukan Penilaian Kinerja Dosen Dengan Metode Fuzzy Database Model Mamdani,” Electrans, vol. 12, no. 2, pp. 161–170, 2013.
[15] S. Komariyah, “Metode Logika Fuzzy Dalam Sistem Pengambilan Keputusan Penerimaan Beasiswa,” J. Media Infotama, vol. 9, no. 1, pp. 1–9, 2013.
[16] K. Suardika, Wahyudi, “Perbandingan Metode Tsukamoto, Metode Mamdani dan Metode Sugeno untuk menentukan Produksi dupa (Studi Kasus : CV. Dewi Bulan),” E-Jurnal Mat., vol. 7, no. 2, p. 180, 2018.

Downloads

Published

2021-04-19

How to Cite

1.
Supadianto S, Kusumadewi S, Rosita L. FUZZY EXPERT SYSTEM UNTUK MEMBANTU DIAGNOSIS AWAL SINDROMA METABOLIK. JIRE [Internet]. 2021 Apr. 19 [cited 2025 Jul. 4];4(1):30-9. Available from: https://e-journal.stmiklombok.ac.id/index.php/jire/article/view/313