Pemodelan Dan Pengembangan Sistem Pendeteksian Penyakit Infeksi Tropis Berbasis Ontologi

  • Lalu Mutawalli STMIK Lombok


Infection disease have been national or international problem. The prevalence rate of meaning is high for death. Infection disease difficulties to controlling. The occurrence of inequality ratio medical professionals is one of the things that became lack of control of infection disease. Information technology is needed to support the achievement of control, it became the base for building a modeling system that can detect the presence of infection disease, especially infectious disease with tropical infection categories. Ontology as a concept in building a system with using jaccard similarity method for calculation of the case. The result a system accuracy in this study, typhoid fever disease as much as 88%, dengue fever as much as 96% and malaria disease as much as 77%. System can be able to use by paramedic as reference the beginning for anamneses also patients can be able to use as an early warning to determine the condition health.


Berutu, S. S., Jatmika, Ontology Pada Diagnosa Penyakit Demam Berdarah. Prosidig Seminar Nasional Sisfotek Sistem Informasi dan Teknologi Informasi.
Chi, Y. L, Chen, T. Y, Tsai, W. T, 2015, A Chronic Dietary Consultation System Using OWL-Based Ontologies and Semantic Rule. Journal of Biomedical Informatics, Department of Information Management Chung Yuan University. Chung Li City Taiwan.
Chen, R, Huang, Y. H, Bau, C. T, Chen, S. M, 2012, A Recommendation System Based on Domain Ontology and SWRL for Anti Diabetic Drugs Selection. Journal Expert System With Application.
Fudholli, D. H, Wenny, R, Pardede, Eric, 2015, A Data Driven Dynamic Ontology. Journal of Information Science.
Maneerat, N, Varakulsiripunth, R, Fudholli, D. H, 2013, Ontology Based Nutrition Planning Assistance System for Health Control, ASEAN Engineering Jaournal.
Moeleok, N. P, 2015, Rencana Strategis Kementrian Kesehatan, Kemenkes RI, Jakarta.
Mboi, N. (2014, Maret 24). Peran Jumlah dan Mutu Tenaga Kesehatan. Dipetik November 18, 2017, dari Pusat Komunikasi Publik Sekretariat Jenderal Kementerian Kesehatan RI:.
Njafa, T, Engo, N, 2018, Quantum Associative Memory With Linier and Non Linier Algorithm for The Diagnosis of Some Tropical Disease. Journal Neura Network.
Putra, I. G, Prihatini, P. M, 2012, Fuzzy Expert System for Tropical Infection Disease by Certainty Factor, Journal Telecommunication Computing Electronic and Control.
Shopia, E., Putri, R., Arwan, Sistem Pakar Diagnosis Penyakit Demam: DBD, Malaria, dan Tifoid Menggunakan Metode K-Nearest Neighhbor-Certainty Factor. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer.
Khairul Imtihan. "Perencanaan Strategi Sistem Informasi Pendidikan Pada Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Lombok." Bianglala Informatika 3.2 (2015).
Rohana, and Khairul Imtihan. "Sistem Informasi Keluhan Pelanggan Pada Perusahaan Daerah Air Minum (PDAM) Kabupaten Lombok Tengah." Jurnal Manajemen Informatika dan Sistem Informasi 1.1 (2018): 24-30.
Soedarto, 2009, Penyakit Menular di Indonesia, Penerbit Sagung Seto, Yogyakarta.
Simanjuntak, C. H, Kusumawardani, S. S, Permanasari, A. E, 2015, Perancangan Ontologi Domain Pengetahuan Saraf Berbasis SWRL Dengan Metode Methontology. Seminar Nasional Teknologi Informasi dan Komunikasi Terapan.
Sappagh, S, Elmogy, M, 2017. A Fuzzy Ontology Modeling For Case Base Knowledge in Diabetes Militus Domaian. Science and Technology an International Journal.
Tan, P. N, Steinbach, M, Kumar, Vipin, 2005. Introduction to Data Mining, Pearson Education Limited, USA.
How to Cite
MUTAWALLI, Lalu. Pemodelan Dan Pengembangan Sistem Pendeteksian Penyakit Infeksi Tropis Berbasis Ontologi. Jurnal Informatika dan Rekayasa Elektronik, [S.l.], v. 1, n. 1, p. 7-12, may 2018. ISSN 2620-6900. Available at: <>. Date accessed: 13 may 2021. doi: