PERFORMA OPTIMASI POLA ELEKTRODA DALAM ELECTRICAL IMPEDANCE TOMOGRAPHY (EIT)
DOI:
https://doi.org/10.36595/jire.v7i2.1224Keywords:
Electrical Impedance Tomography, Elektroda, Optimasi, Pencitraan, RekonstruksiAbstract
Abstrak
Electrical Impedance Tomography (EIT) adalah teknik pencitraan medis yang merekonstruksi gambar berdasarkan distribusi konduktivitas jaringan biologis. EIT memiliki keunggulan seperti portabilitas, resolusi temporal yang baik, biaya rendah, non-invasif, bebas ionisasi, dan bebas radiasi, namun memiliki resolusi spasial yang lebih rendah dibandingkan dengan teknik pencitraan lainnya. Penelitian ini bertujuan untuk mengoptimalkan pola elektroda dan teknik rekonstruksi guna meningkatkan kualitas gambar EIT. Sistem EIT yang digunakan terdiri dari AD5933 untuk pengukuran impedansi, multiplexer 16-pin untuk pemilihan elektroda, Arduino Nano untuk kontrol multiplexer, dan Raspberry Pi untuk pemrosesan data dan rekonstruksi gambar. Perangkat lunak berbasis Tkinter dan pyEIT dikembangkan untuk memudahkan pengguna dalam memilih pola elektroda (Adjacent, Cross, Opposite) dan algoritma rekonstruksi (Back-Projection (BP), Jacobian (JAC), GREIT). Simulasi dilakukan untuk menilai kesamaan antara gambar yang direkonstruksi dengan ground truth menggunakan nilai Structural Similarity Index Measure (SSIM). Hasil simulasi menunjukkan bahwa rekonstruksi JAC dengan pola elektroda adjacent menghasilkan nilai SSIM tertinggi sebesar 0,9427, sementara hasil eksperimen menunjukkan bahwa rekonstruksi BP dengan pola elektroda adjacent menghasilkan nilai SSIM tertinggi sebesar 0,9399. Pola elektroda cross menghasilkan noise berlebihan dan nilai SSIM rendah, sedangkan pola elektroda opposite memerlukan penyesuaian lebih lanjut. Total data yang dihasilkan berbeda dan mempengaruhi waktu pengukuran, dengan urutan elektroda adjacent memiliki data terbanyak dengan waktu akuisisi terpanjang. Hasil penelitian ini memberikan panduan dalam memilih urutan elektroda dan teknik rekonstruksi terbaik untuk meningkatkan kualitas gambar pada sistem EIT.
References
S. Mansouri, Y. Alharbi, F. Haddad, S. Chabcoub, A. Alshrouf, and A. A. Abd-Elghany, “Electrical Impedance Tomography – Recent Applications and Developments,” J Electr Bioimpedance, vol. 12, no. 1, p. 50, 2021, doi: 10.2478/JOEB-2021-0007.
“Drawbacks and Limitations of Computed Tomography Views from a Medical Educator,” 2004.
J. J. Vaquero and P. Kinahan, “Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems”, doi: 10.1146/annurev-bioeng-071114-040723.
A. Koutras et al., “Advantages and Limitations of Ultrasound as a Screening Test for Ovarian Cancer,” Diagnostics, vol. 13, no. 12, p. 2078, Jun. 2023, doi: 10.3390/diagnostics13122078.
Shaikh, Torres, and Takeoka, “Neuroimaging in Pediatric Epilepsy,” Brain Sci, vol. 9, no. 8, p. 190, Aug. 2019, doi: 10.3390/brainsci9080190.
WHO, “Strengthening Medical Imaging.” Accessed: Dec. 26, 2022. [Online]. Available: https://www.who.int/activities/strengthening-medical-imaging
T. K. Bera, “Applications of Electrical Impedance Tomography (EIT): A Short Review,” IOP Conf Ser Mater Sci Eng, vol. 331, p. 012004, Mar. 2018, doi: 10.1088/1757-899X/331/1/012004.
S. Heinrich, H. Schiffmann, A. Frerichs, A. Klockgether-Radke, and I. Frerichs, “Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study,” Intensive Care Med, vol. 32, no. 9, p. 1392, Sep. 2006, doi: 10.1007/s00134-006-0252-0.
L. Tarassenko and P. Rolfe, “Imaging spatial distributions of resistivity—an alternative approach,” Electron Lett, vol. 20, no. 14, p. 574, 1984, doi: 10.1049/el:19840397.
T. Meier et al., “Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography,” Intensive Care Med, vol. 34, no. 3, pp. 543–550, Mar. 2008, doi: 10.1007/s00134-007-0786-9.
N. M. Zain and K. K. Chelliah, “Breast Imaging Using Electrical Impedance Tomography: Correlation of Quantitative Assessment with Visual Interpretation,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 3, pp. 1327–1331, Feb. 2014, doi: 10.7314/APJCP.2014.15.3.1327.
F. Pennati et al., “Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables,” Sensors, vol. 23, no. 3, p. 1182, Jan. 2023, doi: 10.3390/s23031182.
Y. Shi, Z. Yang, F. Xie, S. Ren, and S. Xu, “The Research Progress of Electrical Impedance Tomography for Lung Monitoring,” Front Bioeng Biotechnol, vol. 9, Oct. 2021, doi: 10.3389/fbioe.2021.726652.
S. Mansouri, Y. Alharbi, F. Haddad, S. Chabcoub, A. Alshrouf, and A. A. Abd-Elghany, “Electrical Impedance tomography – recent applications and developments,” J Electr Bioimpedance, vol. 12, no. 1, pp. 50–62, Jan. 2021, doi: 10.2478/joeb-2021-0007.
C. Montellano, E. C. L. Garay, S. Rodriguez, and P. Rogeli, “Development of an electrical impedance tomograph,” in 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, IEEE, Oct. 2011, pp. 1–4. doi: 10.1109/ICEEE.2011.6106665.
J. D. Muñoz, V. H. Mosquera, and C. F. Rengifo, “A low-cost, portable, two-dimensional bioimpedance distribution estimation system based on the AD5933 impedance converter,” HardwareX, vol. 11, p. e00274, Apr. 2022, doi: 10.1016/j.ohx.2022.e00274.
A. Widodo, A. Rubiyanto, and E. Endarko, “The Influence of Multi-frequency Current Injection in Image Reconstruction for Two-Dimensional High-Speed Electrical Impedance Tomography (EIT),” IPTEK The Journal of Engineering, vol. 5, no. 1, May 2019, doi: 10.12962/joe.v5i1.5019.
M. M. Mohamedali, M. E. Salih, and A. A. Mohamed Ahmed, “Design of a simple and low cost electrical impedance tomography system,” Proceedings of the International Conference on Computer, Control, Electrical, and Electronics Engineering 2019, ICCCEEE 2019, Sep. 2019, doi: 10.1109/ICCCEEE46830.2019.9071221.
H. Sohal, H. Wi, A. L. McEwan, E. J. Woo, and T. I. Oh, “Electrical impedance imaging system using FPGAs for flexibility and interoperability,” Biomed Eng Online, vol. 13, no. 1, pp. 1–14, Aug. 2014, doi: 10.1186/1475-925X-13-126/FIGURES/8.
R. Kusche, A. Malhotra, M. Ryschka, G. Ardelt, P. Klimach, and S. Kaufmann, “A FPGA-Based Broadband EIT System for Complex Bioimpedance Measurements—Design and Performance Estimation,” Electronics 2015, Vol. 4, Pages 507-525, vol. 4, no. 3, pp. 507–525, Jul. 2015, doi: 10.3390/ELECTRONICS4030507.
O. Bader, N. E. Ben Amara, and O. Kanoun, “Realistic 2D Model of the Human Thorax for Electrical Impedance Tomography,” in 2022 International Workshop on Impedance Spectroscopy (IWIS), IEEE, Sep. 2022, pp. 70–74. doi: 10.1109/IWIS57888.2022.9975137.
T. Zhang, G. Y. Jang, Y. E. Kim, T. I. Oh, H. Wi, and E. J. Woo, “Influence of current injection scheme on electrical impedance tomography for monitoring of the respiratory function of obese subjects,” J Appl Phys, vol. 128, no. 17, Nov. 2020, doi: 10.1063/5.0022704.
A. Adler et al., “GREIT: a unified approach to 2D linear EIT reconstruction of lung images,” Physiol Meas, vol. 30, no. 6, p. S35, Jun. 2009, doi: 10.1088/0967-3334/30/6/S03.
A. Noor, Oky Rahmanto, and Muhammad Yahya, “PERANCANGAN WIRELESS STARTER KENDARAAN BERMOTOR BERBASIS ARDUINO,” Jurnal Informatika dan Rekayasa Elektronik, vol. 6, no. 2, pp. 228–237, Nov. 2023, doi: 10.36595/jire.v6i2.959.
A. Noor, M. Maulana, and A. Supriyanto, “PURWARUPA SISTEM RUMAH PINTAR BERBASIS INTERNET OF THINGS,” Jurnal Informatika dan Rekayasa Elektronik, vol. 5, no. 2, pp. 272–282, Nov. 2022, doi: 10.36595/jire.v5i2.684.
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 10.1109/TIP.2003.819861.
A. D. Prasetyo, “RPi.EIT: Purwarupa Rekonstruksi Citra pada Electrical Impedance Tomography Berbasis Internet of Things,” 2017, Accessed: Jun. 19, 2023. [Online]. Available: http://repository.ipb.ac.id/handle/123456789/89409
D. H. Kim, S. H. Lee, and H. Hahm, “Wearable Pediatric Eczema Tracker,” Dec. 2019.
J. Zhu et al., “EIT-kit: An Electrical Impedance Tomography Toolkit for Health and Motion Sensing,” UIST 2021 - Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology, pp. 400–413, Oct. 2021, doi: 10.1145/3472749.3474758.
D. Metz, B. Matheis, and I. Constantinou, “Towards micro electrical impedance tomography on chip,” SPhERe Proceedings: 4th International Symposium on Pharmaceutical Engineering Research, 2021, doi: 10.24355/DBBS.084-202110251619-0.
G. Rao, S. Aghajanian, Y. Zhang, L. Jackowska-Strumi??o, T. Koiranen, and M. Fjeld, “Monitoring and Visualization of Crystallization Processes Using Electrical Resistance Tomography: CaCO3 and Sucrose Crystallization Case Studies,” Sensors (Basel), vol. 22, no. 12, Jun. 2022, doi: 10.3390/S22124431.
Published
Issue
Section
License
Semua tulisan pada jurnal ini menjadi tanggungjawab penuh penulis.