PREDIKSI TREN HARGA EMAS TERHADAP DOLAR (XAU/USD) PADA METATRADER 5 MENGGUNAKAN RANDOM FOREST

Authors

  • Gilang Nuraulia Maruf Student
  • Asep Wahyu
  • Ate Mulyana
  • Hadi Prasetyo Utomo
  • Hendra Sandi Firmansyah

DOI:

https://doi.org/10.36595/jire.v8i2.1719

Keywords:

Data Mining, Random Forest, Prediksi, MetaTrader 5

Abstract

Penelitian ini menganalisis efektivitas model Random Forest untuk memprediksi tren harga XAU/USD dalam platform MetaTrader 5. Sifat volatil pasar forex, ditambah dengan meningkatnya partisipasi pedagang ritel, membutuhkan alat prediksi yang akurat. Studi ini menjawab kebutuhan ini dengan memanfaatkan kemampuan algoritma Random Forest untuk menangani data non-linear berdimensi tinggi. Model ini dilatih dan diuji menggunakan data historis XAU/USD dari tahun 2014 hingga 2024, dengan memasukkan indikator teknikal sebagai fitur. Hasilnya menunjukkan akurasi prediktif yang tinggi (98,4%), presisi (98,7%), dan recall (98,9%), menunjukkan efektivitas model dalam memperkirakan pergerakan harga. Matriks confusion lebih lanjut memvalidasi temuan ini, mengungkapkan tingkat false positive dan false negative yang rendah. Penelitian ini memberikan alat praktis bagi para pedagang di platform MetaTrader 5 dan memajukan penerapan kecerdasan buatan dalam analisis pasar keuangan.

Downloads

Download data is not yet available.

References

[1] L. I. Fen, C. Yang, Z. Li, and P. Failler, “Does Geopolitics Have an Impact on Energy Trade? Empirical Research on Emerging Countries,” Sustainability, vol. 13, no. 9, p. 5199, 2021, doi: 10.3390/su13095199.

[2] A. K. Fajar, M. Z. Mutaqin, M. M. Mutoffar, and D. Setiyadi, “Klasifikasi Kanker Payudara Menggunakan Algoritma Neural Network dan Random Forest,” Jurnal Manajemen Informatika dan Sistem Informasi, vol. 7, no. 1, pp. 74–80, 2024.

[3] S. Novianto and H. Wibowo, “The Implementation of Data Mining for Predicting XAU/USD Price Trends in the Forex Market on MetaTrader 5 Using Naïve Bayes Method,” Intelmatics, vol. 3, no. 2, pp. 85–90, 2023, doi: 10.25105/itm.v3i2.17199.

[4] D. Mubarok, K. Adjani, B. D. R. Hutama, M. M. Mutoffar, and R. Indrayani, “Big Data Analytics dan Machine Learning untuk Memprediksi Perilaku Konsumen di E-commerce,” Jurnal Informatika dan Rekayasa Elektronik, vol. 8, no. 1, pp. 159–167, 2025.

[5] F. Febriya, R. S. Citra, T. Sumarni, and M. M. Mutoffar, “Klasifikasi Ujaran Kebencian Dengan Naïve Bayes Classification pada Page Meme Comic Indonesia,” in Seminar Nasional CORIS 2022, 2022.

[6] J. Xu, “An Empirical Analysis of the Efficient Market Hypothesis in China’s Stock Market,” Proceedings of Business and Economic Studies, vol. 4, no. 3, pp. 1–5, 2021, doi: 10.26689/pbes.v4i3.2179.

[7] M. Scherf, X. Matschke, and M. O. Rieger, “Stock Market Reactions to COVID-19 Lockdown: A Global Analysis,” Financ Res Lett, vol. 45, p. 102245, 2022, doi: 10.1016/j.frl.2021.102245.

[8] E. Vasileiou, “Efficient Markets Hypothesis in the Time of COVID-19.,” Review of Economic Analysis, vol. 13, no. 1, pp. 45–63, 2021, doi: 10.15353/rea.v13i1.1799.

[9] R. Puspita, H. Cipta, and R. Aprilia, “Application of the Support Vector Regression Method With the Grid Search Algorithm to Predict Movement Gold Price,” Jurnal Pijar Mipa, vol. 19, no. 2, pp. 380–385, 2024, doi: 10.29303/jpm.v19i2.6607.

[10] N. Singh, “Artificial Intelligence-Driven Model for Gold Price Prediction,” Interantional Journal of Scientific Research in Engineering and Management, vol. 08, no. 05, pp. 1–5, 2024, doi: 10.55041/ijsrem33199.

[11] Y. Rakshitha, K. Divya Sri, B. Swetha, S. Alajangi, and D. Kavitha, “Data Mining Strategies for Gold Price Prediction Using Multi-Factorial Influences,” International Journal for Multidisciplinary Research, vol. 6, no. 3, 2024, doi: 10.36948/ijfmr.2024.v06i03.18567.

[12] X. Pan, “The Comparison Between Random Forest and LSTM Models Based on the Gold Price Prediction,” Advances in Economics Management and Political Sciences, vol. 94, no. 1, pp. 102–108, 2024, doi: 10.54254/2754-1169/94/2024ox0150.

[13] S. Kaewchada, S. Ruang-on, U. Kuhapong, and K. Songsri-in, “Random Forest Model for Forecasting Vegetable Prices: A Case Study in Nakhon Si Thammarat Province, Thailand,” International Journal of Electrical and Computer Engineering (Ijece), vol. 13, no. 5, p. 5265, 2023, doi: 10.11591/ijece.v13i5.pp5265-5272.

[14] P. D. Nguyen, N. N. Thao, D. T. Kim, H.-Cuc. Nguyen, B.-Ngoc. Mach, and T. Q. Nguyen, “Deep Learning-Based Predictive Models for Forex Market Trends: Practical Implementation and Performance Evaluation,” Sci Prog, vol. 107, no. 3, 2024, doi: 10.1177/00368504241275370.

[15] D. Setiyadi et al., “Prediction of heart disease using random forest algorithm, support vector machine, and neural network,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 23, no. 1, pp. 129–137, 2025.

[16] D. Liu et al., “Optimisation and Evaluation of the Random Forest Model in the Efficacy Prediction of Chemoradiotherapy for Advanced Cervical Cancer Based on Radiomics Signature From High-Resolution T2 Weighted images,” Arch Gynecol Obstet, vol. 303, no. 3, pp. 811–820, 2021, doi: 10.1007/s00404-020-05908-5.

[17] X. Fu, Y. Chen, J. Yan, Y. Chen, and F. Xu, “BGRF: A Broad Granular Random Forest Algorithm,” Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8103–8117, 2023, doi: 10.3233/jifs-223960.

Downloads

Published

2025-11-03

How to Cite

1.
Nuraulia Maruf G, Asep Wahyu, Ate Mulyana, Hadi Prasetyo Utomo, Hendra Sandi Firmansyah. PREDIKSI TREN HARGA EMAS TERHADAP DOLAR (XAU/USD) PADA METATRADER 5 MENGGUNAKAN RANDOM FOREST. JIRE [Internet]. 2025 Nov. 3 [cited 2025 Nov. 6];8(2):327-36. Available from: http://e-journal.stmiklombok.ac.id/index.php/jire/article/view/1719